

- Our XMEGA (and many, but not all, other processors) have **externally accessible** address and data busses
 - > XMEGA calls this the *EBI: External Bus Interface*
- In most situations, some of the address pins or address and data pins are **time multiplexed**, i.e., at least two distinct signals share the same pin!

of Florida, EEL 4744 – File 11 Drs. Schwartz &

Δ

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

12

EEL 4744C: µP Apps	EEL4744 GCPU+ Fetch-Decode-							ode-	
Execute Example Suppose we execute the code starting at location \$020E									
E-Cycle #	1: fetch		2: memory	read	3: memory	read/execute	4: fetch		
E-Value							r r		
Au-Au	\$?? X \$02		S02 X S02		\$02 X \$02		S02 X S02		
AD7-AD0	\$?? XSOE		XsdF		X\$10		X S1 1		
8-bit latch	\$??×\$??\$0E		SOEX SOF		\$0F× \$10		<u>\$10X </u> \$11		
R.H/W.L	у								
	<		- LDX #9	60377 —		>	← LDA	AB \$60 →	
		0	20E: C	E 03 77	0211: D6 60				
E-Cycle # E-Value	5: memory r	ead	6: execute		7: fetch		8: execute 1	of 2	
AS A ₁₅ -A ₈	502 X <u>50</u> 2			Normally			<u>\$02</u>	Normally	
AD7-AD0	<u>\$D6</u> X <mark>\$1</mark> 2 ≻	<u>\$60</u>		floats high	<u>(\$1</u> ;3)	\$3 A	\longrightarrow	floats high	
8-bit latch	<u>\$11 \$12</u>				X 1813		\$13		
R.H/W.L									
← LDAB \$60 →					← ABX				
University of Florida, © Drs. Schwar	EEL 4744 – File 11 tz & Arroyo	0211: 1	D6 60			021	13: 3A	13	

EEL4744 XMEGA Write followed by Read and Pipeline • Be careful when having a write followed by a read access > This has been documented to occur with the keypad when a read immediately follows a write - If you can find documentation of this in the Atmel manuals, please tell me where you found it! > If this does occur, add a NOP assembly instructions between a write and read instructions - If one NOP does not work, add 2; if 2 does not work, add 3 • For the XMEGA, one NOP should work • If you need one or more than one NOP, let me know! of Florida, EEL 4744 – File 11 16

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

GCPU-EEL4744 Hardware/Interfacing • Example R1: Add a 4×8 bit • D_7 - D_0 on the μP connect to (4-bytes) RAM module to a D_7 - D_0 on the RAM hypothetical µP with 3 address • $\mathbf{RD} = \mathbf{E} \bullet \mathbf{R}/\sim \mathbf{W}$ pins, 8 data pins and control • WR = E • (R/ \sim W)' pins R/~W & E • Two of the three address 1st Byte $A_2 - A_0$ lines go to A1-A0 on the $A_1 - A_0$ \$54 RAM; $CS = A_i$ $D_7 - D_0$ $D_7 - D_0$ <u>\$F7</u> RAM 1. $CS=A_2$; $A1=A_1$; $A0=A_0$ \$39 R/~W 2. $CS = /A_2$; $A1 = A_1$; $A0 = A_0$ WR **\$B8** CS 3. $CS=A_1$; A1=A₂; A0=A₀ μP 4. CS=A₀; A1=A₂; A0=A₁ Last Byte lorida, EEL 4744 – File 11 22

EEL4744

Conclusions from Example R1

- The data in the RAM will not be accessed contiguously unless we connect the matching contiguous low order lines to the RAM, i.e., $A1=A_1$ and $A0=A_0$
- We have a choice of CS=/A₂ or CS=A₂
 > If want the RAM in the "low memory range," choose CS=/A₂
 > If want the RAM in the "high memory range," choose CS = A₂
- For <u>contiguous access</u> we always connect the <u>low order</u> address pins to all the RAM address pins
- CS = f(**unused high order** address lines). If we have **m** unused address lines we will have 2^{m} possible starting addresses for the contiguous memory block

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

of Florida, EEL 4744 – File 11 Dr. Sobwartz & Arrowo

University of Florida, EEL 4744 – File 11

EEL4744 XMEGA Data Memory Map See doc8385, Figure 7-2 CORRECTED						
Addr (hex)	Description					
0 - 0FFF	I/O Registers (4kB) [0 – 0xBC3 on ours] (Configuration registers)					
1000 - 17 FF	EEPROM (2kB)					
1800 - 1FFF	Reserved					
2000 - 3FFF	Internal SRAM (8kB)					
4000 – FF FFFF	External "Memory" (~16MB)					
University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo	30					

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

Address and Data Bus Timing and Interfacing

39

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

	EEL4744 XMEGA's EBI: Pin-out									
EEL 4744C: μP App	See doc8 Table 2	3331, S 7-4 T	See doc8385, Sec 33.2, Tables 33-7, 33-8, 33-9 for SRAM							
• 01	• Our uPad uses PortH (Port0), PortJ (Port1), and									
Po	ortK (F	P ort 2)	as de	scrib	ed below					
> _	ALE's a	are <mark>acti</mark>	ve-hig	<u>h;</u> so	me manuals	are <u>wrong</u>				
	PORT	PIN	SRAM 3PORT ALE1		SRAM 3PORT ALE12	SRAM 4PORT ALE2	SRAM 4PORT NOALE			
PORT3 (Port E or F)	7:0	-		-	A[15:8]	A[15:8]			
PORT2 (Port K)	7:0	A[7:0]/ A[15:8]		A[7:0]/ A[15:8]/ A[23:16]	A[7:0]/ A[23:16]	A[7:0]			
PORT1 (Port J)	7:0	D[7:0]		D[7:0]	D[7:0]	D[7:0]			
		7:4	CS[3:0] (A[19:16])	CS _I (L)	CS[3:0]	CS[3:0]	CS[3:0] (A[21:18])			
	Dent II)	3	-		ALE2	ALE2	A17			
PORT0	Port H)	2	ALE1(H)		ALE1	-	A16			
		1	re(L)		RE	RE	RE			
University of Flo © Drs. Sc		0	WE(L)		WE	WE	WE			

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

• For each CS, specify size and starting address EBI Chip Select and Base Address								
EBI_	CSx_	CTRI	LA (fc	or x=0,	1,2,3)			
Bit	7	6	5	4	3	2	1	0
+0x00	-			ASIZE[4:0]			MO	DE[1:0]
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0
EBI_	CSx_	BASE	ADD	R (for	x=0,1	,2,3)		
Bit	7	6	5	4	3	2	1	0
+0x02		BASEAD	DR[15:12]		-	-	-	
Read/Write	R/W	R/W	R/W	R/W	R	R	R	R
Initial Value	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
+0x03		v		BASEAD	DR[23:16]	2		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0
© Drs. Schwar	tz & Arroyo							55

See d Sec	loc8331, tion 27	744	XM	IEGA	EB	I: CT	RLA –	
EBI	CSx_	CTRL	A	Contr	ol R	egist	er A	
Bit	7	6	5	4	3	2	1 0	
+0x00	-			ASIZE[4:0]			MODE[1:0]	
Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W R/W	
• Bit	6:2 - A	ddress	Size	See doc8331, Table 27-21	Group	Address	Addr Lines	
				ASIZE	Config	Size	Compared	
ac	dress siz	e for the	e chip	0 0000	256B	256B	ADDR[23:8]	
se	lect	Example	e for 4K	0 0001	512B	512B	ADDR[23:9]	
> Tr	115 15 the	size of t	he	0 0010	1K	1K	ADDR[23:10]	
bl	ock abov	e the ba	se	0 0011	2K	2K	ADDR[23:11]	
ad	aress			N 0 0100	4K	4K	ADDR[23:12]	
• N = # (i.e., 2 ^N	of address = Addr Siz	bits in Ad ze	dr Size,	N-8	1K× 2 ^(N-10)	1K× 2 ^(N-10)	ADDR[23:N]	
• EBI_C	Sx_CTRL	A, for $x=$	0, 1, 2, 3	1 0000	16M	16M		
University of Florida, © Drs. Schwa	EEL 4744 – File 11 rtz & Arroyo			Other			Reserved	56

 See doc8331, Section 27 Section 27 Size of device → which address bits can be used for base address The base address for each chip select must be on a 4KB boundary 								
Examples:	See o	loc8331,						
> For a 256 size, \$EF 37xx	Tabl	e 27-21	Group	Address	Addr Lines			
work for all v!		ASIZE	Config	Size	Compared			
> For a 4K size, \$EF 3xxx		0 0000	256B	256B	ADDR[23:8]			
> For a 64K, \$EF xxxx		0 0001	512B	512B	ADDR[23:9]			
 For a TM, SEX XXXX Anything less than 4k, it 		0 0010	1K	1K	ADDR[23:10]			
will still use 4k of space! (si	nce	0 0011	2K	2K	ADDR[23:11]			
• Note that ALL unused address	sed)	0 0100	4K	4K	ADDR[23:12]			
bits must have <u>ALL</u> values available	N-8	1K× 2 ^(N-10)	1K× 2 ^(N-10)	ADDR[23:N]				
N = # of address bits in Add Size i.e. $2^N = Addr Size$	1 0000	16M	16M					
Example for	4K	Other			Reserved			
University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo					57			

еец 4744с: µ	 E See doc8385, Tables 33-7 E See doc8385, Tables 33-7 E See doc8385, Tables 33-7 C See Table 33-7, column "SRAM ALE1" for relevant control pins for using address/data busses 									
	Port H	Pin #	SDRAM 3P	SRAM ALE1	SRAM ALE12	LPC3 ALE1	LPC2 ALE12			
	GND	53								
	VCC	54								
	PH0	55	WE(L)	WE(L)	WE(L)	WE(L)	WE(L)			
	PH1	56	CAS(L)	RE(L)	RE(L)	RE(L)	RE(L)			
	PH2	57	RAS(L)	ALE1(H)	ALE1(H)	ALE1(H)	ALE1(H)			
	PH3	58	DQM(L)		ALE2(H)		ALE2(H)			
	PH4	59	BA0	CS0(L)/A16	CS0(L)	CS0(L)	CS0(L)/A16			
	PH5	60	BA1	CS1(L)/A17	CS1(L)	CS1(L)	CS1(L)/A17			
	PH6	61	CKE	CS2(L)/A18	CS2(L)	CS2(L)	CS2(L)/A18			
University of © Dr	PH7	62	CLK	CS3(L)/A19	CS3(L)	CS3(L)	CS3(L)/A19 5			

E See doc8385, Tables 33-8 XMEGA Port J Alternate Functions (for expansion) • See Table 33-8, column "SRAM ALE1" for using address/data busses									
	Port	D' //	SDRAM	SRAM	LPC3 (or	LPC2			
	J	Pin #	3P	$\mathbf{ALEI} \left(0 \mathbf{\Gamma} 2 \right)$	2) ALEI	ALEIZ			
	GND	63							
	VCC	64							
	PJ0	65	D0	DO	D0/A0	D0/A0/A8			
	PJ1	66	D1	D1	D1/A1	D1/A1/A9			
	PJ2	67	D2	D2	D2/A2	D2/A2/A10			
	PJ3	68	D3	D3	D3/A3	D3/A3/A11			
	PJ4	69	A8	D4	D4/A4	D4/A4/A12			
	PJ5	70	A9	D5	D5/A5	D5/A5/A13			
	PJ6	71	A10	D6	D6/A6	D6/A6/A14			
University of Florida, EEL 474 © Drs. Schwartz & Arro	PJ7	72	A11	D7	D7/A7	D7/A7/A15			

• See Table 33-9	385, 3-9), colu 1	XM Fur nn "S	XMEGA Port K Alternate Functions (for expansion) on "SRAM ALE1" for using address				
bus	Port		SDRAM	SRAM	SRAM	LPC3	
	K	Pin #	3P	ALE1	ALE2	ALE1	
	GND	73					
	VCC	74					
	PK0	75	A0	A0/A8	A0/A8/A16	A8	
	PK1	76	A1	A1/A9	A1/A9/A17	A9	
	PK2	77	A2	A2/A10	A2/A10/A18	A10	
	PK3	78	A3	A3/A11	A3/A11/A19	A11	
	PK4	79	A4	A4/A12	A4/A12/A20	A12	
	PK5	80	A5	A5/A13	A5/A13/A21	A13	
	PK6	81	A6	A6/A14	A6/A14/A22	A14	
	PK7	82	A7	A7/A15	A7/A15/A23	A15	
University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo						61	

Input Port.asm

XMEGA EBI Chip

Select Base Address

- For each CS, select a base address and a size to reserve an address range that will activate that CS.
- The base address will be used with the settings in EBI_CSx_CTRLA to determine a block of addresses for a specific chip select (x = 0, 1, 2, or 3).
- The base address has the following properties
- > Consists of up to 12 (=24-n) bits for the address, A_{23} : A_n (n=12, 13, ...).

– The lower n bits, A_{n-1} : A_0 , are assumed to be zero.

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo

of Florida, EEL 4744 – File 11

- Next, we have to determine the chip select and the base address
- > EBI_CSx_BASEADDR (x = 0...3)
 - Available in the include file, use the following for the low byte
 EBI CS0 BASEADDR
 - Available in the include file, use the following for the high byte
 EBI_CS0_BASEADDR+1

Address and Data Bus Timing and Interfacing

69

University of Florida, EEL 4744 – File 11 © Drs. Schwartz & Arroyo